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Abstract. Direct statistical simulation of non-stationary non-equilibrium electronic pheno- 
mena in one-dimensional semiconductor structures is carried out to estimate their influence 
on the field emission from semiconductors in different working modes of needle cathodes. 
A macroparticles method is used with self-consistent electric field conditions, taking into 
account the three-dimensional character of the electron scattering. Computation results are 
given for n-type AlllBv semiconductors. 

1. Introduction 

The analytical theory of field emission of electrons from semiconductors derived by 
Stratton [ l ,  21 is based on the ‘zero current’ approximation which suggests that electron 
escape through the crystal surface is compensated by the transport of electrons from the 
bulk to the near-surface region of a semiconductor. Penetration of the external field into 
the semiconductor results in band bending with respect to the Fermi-level at the surface, 
whereas the Fermi-level itself remains constant up to the surface. In n-type semi- 
conductors emission occurs from the degenerate conduction band and the near-surface 
distribution of electrons is defined by the Fermi-Dirac function. 

The penetration of the external electric field into the crystal, resulting in deviation 
from thermodynamic equilibrium of electron energy distribution in the conduction 
band, was treated by Elinson [3]. A set of differential equations for the current, energy 
flow densities, electron temperature and concentration was solved numerically for the 
case of a steady-state field emission from a wide band-gap n-type semiconductor with a 
low electron affinity. 

Electron field emission from semiconductors is governed by the external electric field 
E ,  crystal volume parameters and, in particular, by space-charge region (SCR). The SCR 
thickness is comparable to the electron momentum and energy relaxation lengths, 
therefore the present paper makes use of the kinetic approach employed in [4] with 
application to the submicron semiconductor structures, for treatment of the non-equi- 
librium processes involved in the field emission. We treat evolution of the electron 
processes in a self-consistent electric field with allowance for the three-dimensional 
character of the electron scattering by phonons and impurity atoms in the momentum 
space. Transition processes and attainment of a steady-state field emission current are 
analysed. 
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bulk of a semiconductor / 
A particle method, developed in [5] for the simulation of the kinetic electron pro- 

cesses in the submicron Schottky gate field transistors is exploited for the numerical 
solution of the set of kinetic Boltzmann equations. A real electron gas is substituted in 
this method by a model particle gas, characterised by the same e /m ratio as in a real 
electron gas e/m (e: electron charge; 2 :  particle charge; m: electron mass; m: particle 
mass); in the case of a non-parabolic dispersion law for electrons ~ ( p )  we have 

ea2&/ap2 = ea2E/afi2 
( E :  energy of the particle with the momentumfi), which provides identity of both real 
and model gases. 

One might hope to trace the evolution of the distribution function by calculating the 
particle trajectories, recalculating the self-consistent electric field for every time interval 
and performing the particle-scattering procedure (transitions in the momentum space) 
in conformity with the known probabilities. 

The processes of electron scattering by lattice vibrations and impurity atoms are 
simulated in the present paper by particle scattering using a Monte-Carlo procedure, 
just as in [5] .  

A flow of the field emission current is provided by the boundary conditions proposed 
by us for the case of the field emission and presented below. These conditions define the 
electron transport from the volume of the semiconductor to the SCR and electron escape 
from the surface to vacuum. 

Initial conditions (electron distribution function f ( t ,  p ,  2) and potential energy pro- 
file f ) ( ~ > )  are chosen in a form allowing treatment of transition processes involved in 
field emission. 

2. Formulation of a problem 

Electron field emission is a result of the electron tunnelling through the potential barrier 
at the semiconductor-vacuum interface under the application of a strong electric field, 
E,, to the semiconductor crystal. With allowance for the image-charge forces, the barrier 
shape is approximated by: 

Q(z) = Y - eE,z + ( K  + 1 ) / ( ~  - l)(e2/4z) z < o  
(region I in figure 1) (Y: electron affinity; K :  dielectric constant). The tunnelling prob- 
ability is determined by the transparency coefficient D ( p , ) ,  where p z  is the electron 
momentum component, perpendicular to the surface. 
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The distribution function of electrons in the conduction band for the case of the non- 
equilibrium field emission in the SCR (region I1 in figure 1) is obtained from a solution of 
a set of Boltzmann kinetic equations in a self-consistent electric field: 

afi(t,p, z ) /a t  + (JEi/aPz)(afj(t,P, ~ ) / a z )  - eE(afi(t,P, Z ) / ~ P )  = Si (1) 

K 

where E is the self-consistent electric field strength,f,(t, p ,  z )  is the electron distribution 
function for the valley i, i = (r, L, X). Here ‘i’ denotes electron energy minima which 
correspond to the r, L, X points. JYD is the ionised donor concentration. A model 
developed by Kein [6] is used as a dispersion law: 

&,(I + CY,&,) =p2/2m, 
where m, is the electron effective mass at the bottom of the i-valley; CY, is the non- 
parabolicity parameter. 

An explicit form of the collision integrals, S ,  is determined by the probabilities of 
electron transitions between different electron states. The electron-electron interaction 
is considered to be negligibly small; the effects due to possible electron gas degeneration 
at the surface (i.e. SCR) are also neglected. In the collision integrals the following 
processes are taken into account: (1) intra-valley scattering by the ionised impurities, 
acoustical phonons and optical phonons; (2) inter-valley transitions with absorption and 
emission of an inter-valley phonon (transitions with absorption and emission of a phonon 
are assumed to be different). 

Boundary conditions for the set of the differential equations (1)-(2) (the left- and 
right-hand boundaries of region I1 in figure 1) are defined taking into account the 
following considerations. 

(i) The right-hand boundary of region I1 is chosen so far from the surface that the 
electron concentration is equal to the concentration in the bulk of the sample. Therefore 
the electron distribution function on the right-hand boundary of the region under 
investigation is equal to the function in the bulk and its spatial gradient is equal to zero. 
So the distribution function on the boundary is defined from the solution of a set of 
Boltzmann kinetic equations (1) in which the second term must be put equal to zero. 

(ii) For the left-hand boundary of region 11, at z = 0, E = E,/K. The electron escape 
into the vacuum is defined by the transparency coefficient D(p,), which is calculated 
from the Schrodinger equation. For the electron distribution function at z = 0 we have: 

f , (Pz)  = (1 - ~(Pz) ) f ! ( -Pz ) .  
Initial conditions for the solution of the set of equations (1)-(2) are specified from 

the spatial distribution of the electric field potential, which is obtained from solution of 
a self-consistent problem assuming thermodynamic equilibrium between the electron 
gas and the lattice 

d 2@(z)/dz2 = - ( 4 ~ 7 ~ e * S \ ~ ~ / ~ ) ( e - ~ ( ~ ) / ~ ~  - 1) 
d@(z)/dzl,=, = eE,/K @(z)-O under z - x  

and the local Maxwell distribution function 

f (P, z> = S\rD exp(-@(z)/kT)fO(p) 
wherefo(p) is the Maxwell distribution function, k is the Boltzmann constant and Tis 
temperature. 
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3. Numerical simulation of a problem 

According to the particle method, the electron gas is represented in a one-dimensional 
coordinate space as an ensemble of flat sheets, infinite in two dimensions, with the 
homogeneously distributed charge and mass, their dynamics being identical to that of 
real electrons [7]. 

On passing from the real electron gas to the model one, we have 

e f , d p = t  f , d p  i i  
where 

"Y , 

] = 1  
&,@, z> = c q z  - Z , ( W ( P  -P,(t>) 

is a discrete distribution function for the i-type macroparticles, XI is a number of particles 
of the i-type, z(r) and@(t) and coordinate and momentum of the j-particle of the i-type 
at a moment of time r. Under this condition the electric field potential is invariant with 
respect to such a transition. To ensure invariance of the Debye screening length, YD, and 
the plasma frequency as one passes to the model gas, the following relations should be 
fulfilled: 

a E I  l a p  = a$/a@ t p  = ep. 

We seek a solution for the set of the microscopic kinetic equations for the discrete 
distribution functions 

a f , ( t , p ,  z)/ar + (ae,/apz)(af,(t,p, ~ > ) / a z  - ~ ~ ( a f & , p ,  z ) ) / a a  = 3, (3) 

4ne 
K i  K 

(4) 

where s, is the collision integral for the i-type macroparticle. 

distribution in the momentum space, which is described by the relations 
The collison integrals in the kinetic equation (3) provide 'mixing' of the particle 

- ( I )  / - where Si,i,' [ f i ]  and ,$:)"[f,,] describe, respectively, the depopulation and population of 
the state with momentum@ as a result of scattering of the macroparticles of the i(i')-type 
by means of an I-mechanism with transformation into the i'(i)-type. Then 

p ' , p ,  COS 0)6(E, , (p ' )  - 8 , ( p )  + Ai,,,) d@' -(2) i - V,,I = J f f , ( p ' ) W 1 , ,  ( - 

Lf,,,(p) = 1 U:,,,(p, cos 0 )  d cos Odp? 

where q is the azimuth, w;, , ,(p,  cos 0 )  is the angular dependence of the macroparticle 
scattering probability, ( p ' ,  p ,  cos 0 )  is the probability of macroparticle transition 
from the i'-type valley to the i-type valley as a result of the scattering by means of the 1- 
mechanism and A:,,, is the energy difference between the final and the initial states of 
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the scattered particle, which is equal to the corresponding phonon energy. It should be 
noted that integrals in ( 5 )  are not evaluated, but the matrix elements h)i,;, and Wf,ir in 
the form presented in [5]  are used for the calculation of transition probabilities. 

The Monte-Carlo procedure is performed as follows: macroparticles of the i-type 
(i = r, L, X) change their momentap as a result of scattering throughout by one of the 
ten possible mechanisms, characterised by the probability if,;, ( p ) .  This process is 
described by Si,i.’ [f,] in ( 5 ) .  In the spherical coordinate system with the polar axis along 
p ,  the angles of the macroparticle scattering 8 and q are incidentally obtained in 
conformity with the probability ci&,(p, cos e) .  A new particle is added to the particle 
ensemble instead, with the momentum that is found by the described procedure above. 
This process corresponds to s!2!3/[fi,] in ( 5 ) .  

In intervals between sca td ing ,  the particles obey classical mechanics laws for a self- 
consistent electric field, defined from the equation (4). With allowance for a dispersion 
law, the equations of motion are of the form: 

-(1) / - 

dzj(t)/dt = pz,(t)/tfzi(l + 2&.,Ej(t)) 

E j ( t ) ( l  + C t i E , ( t ) )  = (pj(t))’/2tfz[ 

dPzj/dt = F z ( Z j ( t ) )  

where F(z j ( t ) )  = -eE(zj(t))  is the field strength, and tfz; = m;E/e and &; = q e / E  are the 
mass and non-parabolicity parameters of the i-type macroparticle. 

For a numerical solution of these equations, a second-order of accuracy in a time 
finite-difference scheme is used: 

Z j ( t  + 2/2) = Z j ( t )  + tpzj(t)/2tfzi,(l + 2k jE j ( t ) )  

p z j ( t  + t) = p Z j ( t )  + t F , ( Z j ( t  + z / 2 ) )  

Z j ( t  + z) = Zj(t + 2/2)  + t p z j ( t  + T)/2tfzi(l  + 2&i&j(t + z)). 

( 6 )  

We note that, in view of the possibly large electric field and particle concentration 
gradients in the SCR for numerical solution of equation (4), an irregular net is used in the 
coordinate space, which is the more dense the closer it comes to the semiconductor- 
vacuum interface (region 11, figure 1) .  This enables an increase in computation accuracy 
without a concomitant increase in the number of gridpoints. 

The penetration of the electron through the potential barrier at the surface is simu- 
lated by means of a probability procedure as follows: a macroparticle incident on the 
interface ( z  = 0) with momentump is backscattered with probability (1 - D ( p , ) ) ;  and 
with probability D(p , )  it is removed from the ensemble of the calculated macroparticles. 

The electron injection to the region being calculated (I1 in figure 1) from the volume 
region (111 in figure 1) is simulated by the ‘periodic’ boundary conditions: when a particle 
on its way to the surface crosses the border between the outermost and neighbouring 
cells of the coordinate net and leaves the outermost cell, a new particle of the same 
type and momentum is generated in the outermost cell. Here the particle momentum 
distribution function in the outermost cell corresponds to the solution of a set of Boltz- 
mann equation (3), under the assumption that there is no distribution function gradient. 

A practical realisation of the macroparticle method suggests that the convergence of 
the method should be proved by proceeding from the results of the numerical simulation. 
The solution should not change with increasing number of particles or with variation of 
the parameters of the model. 
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Figure 2. Electric field profile and distribution 
function of the electrons in the SCR: dashed curve, 
‘zero-current’ approximation; solid curve, under 
current flow. 
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The processes involved in electron field emission from the semiconductor to the 
vacuum are simulated by means of evolution of the discrete distribution functions in 
time. Let us introduce the time net t, = nAt, where n is the number of steps and At is the 
time interval. The free path time tl is defined for every macroparticle. When tl At; 
the coordinates and the momentum components at the moment of time t,, = (n  + 1)At 
are obtained from the equations of motion (6). When t1 < At, the coordinates and the 
momentum components at the moment of time t, + tl are defined from the solution of 
(6), then the particle is scattered by the procedure described above. For the next step 
the electron path time is t2. If t, + z1 + t2 2 t n+l ,  a particle described by (6) is shifted 
on the time scale by the time interval At - tl; otherwise it shifts by the time interval z2 
with subsequent scattering. The procedure is repeated until the particle reaches the 
moment t,, on the time scale. After the time shift of all the particles by At up to the 
moment t,+ ,, the volume charge distribution is defined by their discrete distribution 
functions; afterwards, equation (4) is solved and the self-consistent electric field at a 
moment of time t,+l is found. After that the procedure is repeated. 

In the present paper the calculation is performed for the n-type GaAs-emitter with 
the parameters taken from [8]. Typical values for the parameters used are: particle 
number, up to 10000; number of gridpoints in the spatial net, of the order to 100; number 
of steps before attainment of the stationary emission process, from 1000 to 10000 
depending on concentration (1013-1017 ~ m - ~ ) ;  and applied field (107-5 x lo7 V cm-I). 

4. Results and discussion 

The analysis of our results shows that the ‘zero current approximation’ used by Stratton 
[l, 21, may become inappropriate for the field emission processes. 

The electron distribution function close in to the surface barrier potential for the 
case of an absolutely impermeable barrier (a so-called ‘zero current’ case) is presented 
in figure 2, dashed curve. As may be inferred from the full curve, the electron escape 
into the vacuum changes the distribution function with respect to the case when the 
emission is absent. 
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Figure 3. Electron energy distribution functions 
in the SCR for external field strengths, E,: A, E = 
3 x 10'V cm-I; B,  E = 3.5 x lo7 V cm-'; C ,  E = 
4 x io7 V cm-'. 

Figure 4. Energy distributions of the emitted elec- 
trons for external field strengths E,: A ,  E = 
3 X 1 0 7 V c m - ' ; B , E = 3 . 5  X 1 0 7 V c m - ' ; C , E =  
4 x 10'V cm-'. 

The results of our computation indicate that the electron-gas heating already occurs 
at low fields, sufficient for electron tunnelling through the barrier. Figure 3 shows the 
energy distribution of the electrons in the SCR. As follows from our numerical results, 
increasing the electric field strength results in a broadening of the electron distribution 
function. We can propose a possible mechanism leading to the broadening of the electron 
distribution function. 

Due to the increase in the tunnelling probability with the electric field rise the electron 
escape from the near-surface region is not compensated by the electron transport from 
the semiconductor volume. The charge, accommodated in the near-surface region, 
decreases, and is not sufficient to screen the external field, which penetrates the bulk 
and brings about heating of the electron gas. 

Thus, the distribution function for electrons, drawn from the bulk into the SCR, is 
materially non-equilibrium: the width of the energy distribution in strong fields may be 
as great as several tens of kT (figure 3 ) .  

If the energy relaxation length is comparable to (or exceeds) the SCR thickness, which 
is of the order of the Debye radius, energetic electrons, arriving from the bulk, are not 
completely thermalised. The electron distribution function at the barrier is a super- 
position of distribution function for the nearly thermalised electrons and 'quasiballistic' 
particles (which have as a result of scattering lost only a part of their energy, acquired 
in the field) penetrating the bulk. The distribution function of the near-surface electrons 
for different external fields is given in figure 3 .  

Figure 4 shows the energy distributions of the emitting electrons at the same 
conditions. At  low values of the external electric fields, the main contribution to the 
emission current is due to thermalised electrons from the bottom of the conduction 
band. With increasing field strength, another process also contributes to the current, 
namely, transport of quasiballistic electrons with increased kinetic energy. The emission 
regime is defined by relation between the electron free path and lifetime in the near- 
surface potential well with respect to emission. 

Thus, the kinetic approach derived for the simulation of the semiconductor emitter 
operation indicates strong influence of the electric field on the electron distribution 
function and emission regime. In the theory, given by Stratton [1, 21 the field affected 
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Figure 5. Time dependence of the near-surface 
electron concentration. 
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the near-surface band bending without changing the electron distribution function; 
whereas, according to our calculations, a field increase results in emission regime and 
energy spectrum changes. 

Time evolution of the near-surface electron concentration in the transient process 
of attainment of a new stationary state under abrupt increase of the external field from 
3 x lo7 V cm-' to 3.5 X lo7 V cm-' is shown in figure 5 .  We note that time durations 
of the transient processes are of the order of several tens of picoseconds; therefore 
semiconductor materials can be used as high-speed emitters. We also note that the 
advantage of the direct particle approach used in the present paper makes possible direct 
observations of the transient processes of field emission current steady-state attainment. 

The results of the numerical simulation presented in this paper demonstrate that 
the non-equilibrium electron processes must be taken into account for field emission 
investigations of semiconductors. 
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